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Estimating river discharge from SWOT measurements

Estimating Depth
A first attempt to invert SWOT observations to find depth

Figure 4. In order to estimate discharge from WSE obser-
vations, an estimate of channel bed elevation or an esti-
mate of the intial water depth is required. Under two as-
sumptions, the SWOT WSE elevation timeseries can be 
interrogated to yield estimates of initial depth: i) flow hy-
draulics can be approximated by kinematic wave approxi-
mation, and ii) steady flow. We evaluated these assump-
tions and found that they held within 10 % error about 95 
% of the time, for the model setup described above. 

The method relies, however, on slope timeseries variabil-
ity. We calculared the slope time series coefficient of varia-
tion for each pixel along the Tennessee River (a). Unless 
the coefficient of variation is greater than around 0.2, the 
method is not used. 

Where the method is utilized, estimates are not always ac-
curate (b). New mehods for depth estimation will be ex-
plored, including data assimilation-based approaches, 
width-to-depth algorithms, and constraints based on geo-
morphology. 

However, the current estimate is useful as a worst-case 
scenario, and for visualizing how error in depth estimates 
propagate into discharge estimates. 
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Estimating Discharge
Quantifying expected errors
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Figure 5. The relative and absolute discharge errors for 
the Tennessee (a) and Monongahela (b) rivers are shown 
for individual pixels along the river. The depth error is 5.0 
meters (200 %) for the Tennessee and 0.5 meters (100 %) 
for the Monongahela rivers. These depth errors lead to in-
correct discharge means. The discharge variations, how-
ever, are effectively captured, even for this worst case esti-
mate of river depth. The mechanism for this is clear from 
the equations, below, for absolute (left) and relative (right) 
discharge error due to depth error. The sensitivity of these 
metrics is shown in (c), below. Depth error is amplified by 
1.6 for absolute discharge. For relative discharge, depth 
error is damped. In order to achieve 20 % accuracy for 
relative discharge, depth error must be less than 40 %.

Simulated SWOT observations
Observations of Water Surface Elevation
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Figure 3. The LISFLOOD model is used to predict water surface elevations (WSE), 
which are space-time sampled based on SWOT orbits under investigation. Sampling of 
WSE based on a 22-day orbit is shown in a) and b). The SWOT observations are ob-
tained by perturbing these elevations based on random noise, assuming that 50 m SWOT 
pixels will have errors with standard deviation of approximately 50 cm.

The SWOT Mission and Virtual Mission
Modeling SWOT measurements with the LISFLOOD model

Figure 1. The Surface Water and Ocean To-
pography (SWOT) mission will measure in-
undated area and water elevation (h) for 
inland water surfaces, from which water 
slope (∂h/∂x) and temporal change  (∂h/∂t) 
are derived. From these fundamental mea-
surements, surface water storage change and 
river discharge will be calculated, two princi-
pal components of the water cycle.  SWOT 
has been recommended by the Deacadal 
Survey for a launch date timeframe between 
2013-2016. A key technology of the SWOT 
mission is a Ka-band Radar INterferometer 
(KaRIN) which is a near-nadir viewing, 120 
km wideswath based instrument that uses in-
terferometric SAR processing of the returned 
pulses to yield single-look 5m azimuth and 
10m to 70m range resolution, with an eleva-
tion accuracy of approximately 50 cm. Figure 
from Alsdorf et al. (2007).

Figure 2. The SWOT Virtual Mission is a 
collaboration between CNES, NASA JPL, 
UW, OSU, et al., and includes modeling and 
assimilation studies. Goals include risk re-
duction, demonstrating example SWOT 
products, defining science traceability, and 
error budgets for the primary science prod-
ucts. In this study, SWOT observations are 
simulated using the LISFLOOD hydrody-
namic model (Bates and de Roo, 2000), 
forced by USGS gages (a) on eleven of the 
major tributaries of the Ohio River. The 
model implements the diffusion wave ap-
proximation (eqn. below). Channel width 
was obtained from a Landsat classification, 
and used wirh Hydro1K steamline data (b) 
aggregated to 1 km spatial resolution. The re-
sulting downstream discharge timeseries is 
shown (c).
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